
Microprocessor（Lecture 1）

1

Introduction

•Portal for students’ experiments (情報・知能⼯学系
学⽣実験サイト)
http://www.cs.tut.ac.jp/jikken/
•Documents are available at

https://expcs.github.io/microprocessor/
•Reports should be submitted by e-mail to

fukumura@cs.tut.ac.jp
•レポートは⽇本語でも英語でも可

• If you have questions, you can e-mail me or visit F-413.

2

Schedule (see p. 26)

Lecture 1: Introduction
Problem 3.1: Addition

Problem 3.3 (1): Single tone

Lecture 2: Basic Programming
Problem 3.2: Multiplication

Lecture 4: Applied programming
Problem 3.3 (2): Melody

You should prepare programs for Problem 3.2 and 3.4
3

Week 1

Week 2

Week 3

What we will do today

• Introduction
•Fundamental usage of KUE-CHIP2
•Problem 3.1
• Trace the values in ACC, PC, FLAG, etc., while

executing ADD and ADC.
•Problem 3.3 (1)
• Check the clock frequency
• Generate a single tone that are as much accurate 440

Hz as possible.
• Introduction of next problem

4

Relationships between a computer and a user

User

Computer

Input

Output

How do they
communicate with each

other?

5

Hardware

Input devices Output deivices

Storage Processing Unit
6

Software

Input devices Output deivices

Storage Processing Unit

System program

Application program

7

Question

•How does the processing unit understand programs
(software)?

Program in
high-level language

Program in
machine language

8

Answer (tentative)

• “Compiler” and “assembler” convert the problem

Assembly
language

com
pile

assem
ble

High-level
language

Machine
language

9

Assembly
language

com
pile

assem
ble

High-level
language

Machine
language

What is “machine language?”

• It can be understood and executed directly by CPU
• It is composed of 0 or 1
• It differs among CPUs

10

Assembly
language

com
pile

assem
ble

High-level
language

Machine
language

What is “high-level language?”

• It can be easily understood by human
•For e.g. C, C++, Java, Perl
• It is the same for all CPUs

11

Assembly
language

com
pile

assem
ble

High-level
language

Machine
language

What is “Assembly language?”

• It is a translation of machine language
• It has a one-to-one correspondence with the

machine language
• It differs among CPUs

12

Assembly
language

com
pile

assem
ble

High-level
language

Machine
language

What is “compile?”

• It means to translate programs from a high-level
language to an assembly language (or a machine
language)

13

Assembly
language

com
pile

assem
ble

High-level
language

Machine
language

What is “assembly?”

• It is the process of translating programs from an
assembly language to a machine language.

14

Flow of the theme

1. Programming in an assembly language
2. Manually assembling your own programs
3. Executing the programs and understanding the

mechanisms.

15

Assembly
language

assem
ble

Machine
language

Device used in this theme

•KUE-CHIP2
• It is an educational 8-bit microprocessor

= CPU

0 0 0 1 0 0 1 1

13h ← The “h” signifies that the
number is in the hexadecimal notation
(e.g. 13H，0x13)

8 bits = 1 byte

16

Structure of KUE-CHIP2 (p.22 Fig. 1)

17

KUE-CHIP2: bus

• Input bus: It connects inputs and CPU
•Output bus: It connects outputs and CPU

18

KUE-CHIP2: ALU

•ALU stands for “Arithmetic and Logic Unit” (演算ユ
ニット)
• It performs arithmetic (算術) and logical (論理)

operations and addresses calculation

19

KUE-CHIP2: ACC

•ACC is the accumulator
• It is an 8-bit register for operations
• It stores operands and operated results

20

KUE-CHIP2: IX

• IX refers to index register
• It is an 8-bit register used for operations
• It stores operands and operated results
• It is used for indexing an address for indexed

address (修飾アドレス)

21

KUE-CHIP2: FLAG

•Flag register
• It is changed by operation results

－ － － － CF VF NF ZF

Carry flag

Overflow flag

Negative flag

Zero flag
p.22 Fig. 2

22

KUE-CHIP2: PC

•PC refers to program counter
• It stores the 8-bit address on the memory of the

subsequent command.

23

KUE-CHIP2: MAR

•MAR is the “memory address register” (8 bits)
• It stores the memory address from which data will

be fetched or to which data will be sent

24

KUE-CHIP2: Internal memory (内部メモリ)

• It consists of 512 bytes. The indexing unit is byte
•Program region: 0-255 addresses
•Data region: 256-511 addresses

Program
region

Data region

000

0FF

1FF

100

011000100

255
256

511

～
～

p.23 Fig. 3

25

Assembly language for KUE-CHIP2

•Commands: p.24 Table 1
• Language specification: pp.35-38 Appendix A
•Format for machine language: 1 or 2 byte (p.23 Fig.

4)

26

Example (p.30, List 2)

Assemble

02hBA001000000000001104:

ACCRLL0111010003:

OUT0---000102:

ACC, 01hLD00010000001-011000:
operandscommanddataaddress

Assembly languageMachine language

27

Example (p.30, List 2)

02hBA001000000000001104:

ACCRLL0111010003:

OUT0---000102:

ACC, 01hLD00010000001-011000:
operandscommanddataaddress

Load the value “01” in the ACC

28

Example (p.30, List 2)

02hBA001000000000001104:

ACCRLL0111010003:

OUT0---000102:

ACC, 01hLD00010000001-011000:
operandscommanddataaddress

Output the content of ACC to the output buffer
(OBUF)

29

Example (p.30, List 2)

02hBA001000000000001104:

ACCRLL0111010003:

OUT0---000102:

ACC, 01hLD00010000001-011000:
operandscommanddataaddress

Logically left rotate (論理左回転) the content of
ACC, and store the rotated result

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0
30

Example (p.30, List 2)

02hBA001000000000001104:

ACCRLL0111010003:

OUT0---000102:

ACC, 01hLD00010000001-011000:
operandscommanddataaddress

Always return the “02” address

31

How to assemble (1/4)

•Command table (p.37, Table 8)
•Assembly “LD ACC,01h”

Rsm 0 1 0 0 A 1 s m × Rotate sm

LD 0 1 1 0 A B ○ LoaD

ST 0 1 1 1 A B ◎ STore

SBC 1 0 0 0 A B ○ SuB with Carry

10000000-1000110

32

How to assembly (1/4)

10000000-1000110

A B

A = 0:ACC

A = 1:IX

B = 000:ACC

B = 001:IX

B = 01-:Immediate (即値)
B = 100:Direct (直接)(P)
B = 101:Direct(D)

B = 110:Indexed (修飾)(P)
B = 111:Indexed(D)

The value in
operands

33

•Command table (p.37, Table 8)
•Assembly “LD ACC,01h”

How to assembly (1/4)

10000000-1000110

34

•Command table (p.37, Table 8)
•Assembly “LD ACC,01h”

How to assembly (2/4)

•Command table (p.37, Table 8)
•Assembly ”OUT”

0 1 0 1 - - - - ×

OUT 0 0 0 1 0 - - - × OUTput

IN 0 0 0 1 1 - - - × INput

RCF 0 0 1 0 0 - - - × Reset CF

---01000

35

How to assembly (3/4)

•Command table (p.37, Table 8)
•Assembly “RLL ACC”

Rsm 0 1 0 0 A 1 s m × Rotate sm

LD 0 1 1 0 A B ○ LoaD

ST 0 1 1 1 A B ◎ STore

SBC 1 0 0 0 A B ○ SuB with Carry

11100010

36

How to assembly (3/4)

11100010

A

A = 0:ACC

A = 1:IX

37

•Command table (p.37, Table 8)
•Assembly “RLL ACC”

How to assembly (3/4)

11100010

s m

RA 0 0 Right Arithmetically

LA 0 1 Left Arithmetically

RL 1 0 Right Logically

LL 1 1 Left Logically
38

•Command table (p.37, Table 8)
•Assembly “RLL ACC”

How to assembly (4/4)

•Command table (p.37, Table 8)
•Assembly “BA 02h”

RCF 0 0 1 0 0 - - - × Reset CF

SCF 0 0 1 0 1 - - - × Set CF

Bcc 0 0 1 1 c c ◎ Branch cc

Ssm 0 1 0 0 A 0 s m × Shift sm

00001100 01000000

39

How to assembly (4/4)

00001100

cc

01000000

A 0 0 0 0 Always

VF 1 0 0 0 on oVerFlow

NZ 0 0 0 1 on Not Zero

Z 1 0 0 1 on Zero

40

•Command table (p.37, Table 8)
•Assembly “BA 02h”

Example (p.30, List 2)

02hBA001000000000001104:

ACCRLL0111010003:

OUT0---000102:

ACC, 01hLD00010000001-011000:
operandscommanddataaddress

“-” represents “do not care.”
It can be replaced with either “0” or “1.”

41

Example (p.30, List 2)

02hBA001000000000001104:

ACCRLL0111010003:

OUT0000000102:

ACC, 01hLD000100000010011000:
operandscommanddataaddress

Finish to assemble

04:

03:

02:

00:
01:

05:

42

What we will do today

• Introduction
•Fundamental usage of KUE-CHIP2
•Problem 3.1
• Trace the values in ACC, PC, FLAG, etc., while

executing ADD and ADC.
•Problem 3.3 (1)
• Check the clock frequency
• Generate a single tone that are as much accurate 440

Hz as possible.
• Introduction of next problem

43

Execution of programs

•Follow Sec. 2.5 (pp.26--32)
•Caution:
• Plug in after the board is connected to the adapter.
• Plug into the outlets fixed on the desks
• Do not touch the condenser beside the power switch
• Press the RESET button before execution

•After all of you have finished the procedure, we will
proceed to the next step.

44

Supplementary explanation for operating the
board

•The SS switch executes, stops, and resumes
programs.
•The CLKFRQ dial changes the speed of execution.
•The SEL switch displays the contents of ACC, PC,

FLAG, MAR, etc.
•The SI switch executes a command (the step

execution)

45

What we will do today

• Introduction
•Fundamental usage of KUE-CHIP2
•Problem 3.1
• Trace the values in ACC, PC, FLAG, etc., while

executing ADD and ADC.
•Problem 3.3 (1)
• Check the clock frequency
• Generate a single tone that are as much accurate 440

Hz as possible.
• Introduction of next problem

46

How does a command execute?

•A command executes by clock
•A single cycle of the clock corresponds to a single

execution phase.

•Each command of KUE-CHIP2 consumes 3—5
phases.
• P0, P1: common in all commands
• After P2: differs among the commands

p.25, Table 2

47

address data label command operands

D1: EQU 80h

D2: EQU 81h

ANS: EQU 82h

00: 64 80 LD ACC,[D1]

02: B4 81 ADD ACC,[D2]

04: 74 82 ST ACC,[ANS]

06: 0F HLT

END

80: 03

81: FD

Example for trace of the execution (p.26,
List 1)

”D1” corresponds to “80h”.
(Similar to variable declaration or
initialization.) 48

address data label command operands

D1: EQU 80h

D2: EQU 81h

ANS: EQU 82h

00: 64 80 LD ACC,[D1]

02: B4 81 ADD ACC,[D2]

04: 74 82 ST ACC,[ANS]

06: 0F HLT

END

80: 03

81: FD

It transfers the contents of memory
location D1 to ACC

Example for trace of the execution (p.26,
List 1)

49

address data label command operands

D1: EQU 80h

D2: EQU 81h

ANS: EQU 82h

00: 64 80 LD ACC,[D1]

02: B4 81 ADD ACC,[D2]

04: 74 82 ST ACC,[ANS]

06: 0F HLT

END

80: 03

81: FD

It adds the contents of ACC and the D2
address in the program region

Example for trace of the execution (p.26,
List 1)

50

address data label command operands

D1: EQU 80h

D2: EQU 81h

ANS: EQU 82h

00: 64 80 LD ACC,[D1]

02: B4 81 ADD ACC,[D2]

04: 74 82 ST ACC,[ANS]

06: 0F HLT

END

80: 03

81: FD

It stores the content of ACC to the
ANS address in the program region

Example for trace of the execution (p.26,
List 1)

51

address data label command operands

D1: EQU 80h

D2: EQU 81h

ANS: EQU 82h

00: 64 80 LD ACC,[D1]

02: B4 81 ADD ACC,[D2]

04: 74 82 ST ACC,[ANS]

06: 0F HLT

END

80: 03

81: FD

It halts the execution of the program

Example for trace of the execution (p.26,
List 1)

52

address data label command operands

D1: EQU 80h

D2: EQU 81h

ANS: EQU 82h

00: 64 80 LD ACC,[D1]

02: B4 81 ADD ACC,[D2]

04: 74 82 ST ACC,[ANS]

06: 0F HLT

END

80: 03

81: FD

Input “03” in the 80th address and
“FD (-3)” in the 81st address

Example for trace of the execution (p.26,
List 1)

53

address data label command operands

D1: EQU 80h

D2: EQU 81h

ANS: EQU 82h

00: 64 80 LD ACC,[D1]

02: B4 81 ADD ACC,[D2]

04: 74 82 ST ACC,[ANS]

06: 0F HLT

END

80: 03

81: FD

Example for trace of the execution (p.26,
List 1)

This is the assembled program in
the hexadecimal notation

54

Trace of the execution

P0 P1 P2 P3 P4

LD

ACC
IX

(PC)→MAR
PC++

(Mem)→IR

(A)→B

d
(PC)→MAR
PC++

(Mem)→A

[d]
(d)

(Mem)→MAR (Mem)→A

LD ACC,[D1]

A B

According to type of B,
the procedure is changed.

55

p.25 Table 2

Trace of the execution

00

00

00

000000

000: 64
001: 80
002: B4
...
080: 03
081: FD

LD ACC,[D1]

56

Trace of the execution

00

00

00

000000

000: 64
001: 80
002: B4
...
080: 03
081: FD

LD ACC,[D1] P0: (PC)→MAR, PC++

57

Trace of the execution

01

00

00

000000

000: 64
001: 80
002: B4
...
080: 03
081: FD

LD ACC,[D1] P0: (PC)→MAR, PC++

58

Trace of the execution

00 01

00000000

000: 64
001: 80
002: B4
...
080: 03
081: FD

LD ACC,[D1] P1: (Mem)→IR

59

Trace of the execution

64 01

00000000

000: 64
001: 80
002: B4
...
080: 03
081: FD

LD ACC,[D1] P1: (Mem)→IR

60

Trace of the execution

01

01

64

000000

000: 64
001: 80
002: B4
...
080: 03
081: FD

LD ACC,[D1] P2: (PC)→MAR, PC++

61

Trace of the execution

02

01

64

000000

000: 64
001: 80
002: B4
...
080: 03
081: FD

LD ACC,[D1] P2: (PC)→MAR, PC++

62

Trace of the execution

01

0264

000000

000: 64
001: 80
002: B4
...
080: 03
081: FD

LD ACC,[D1] P3: (Mem)→MAR

63

Trace of the execution

80

0264

000000

000: 64
001: 80
002: B4
...
080: 03
081: FD

LD ACC,[D1] P3: (Mem)→MAR

64

Trace of the execution

80

0264

000000

000: 64
001: 80
002: B4
...
080: 03
081: FD

LD ACC,[D1] P4: (Mem)→A

65

Trace of the execution

80

0264

000300

000: 64
001: 80
002: B4
...
080: 03
081: FD

LD ACC,[D1] P4: (Mem)→A

66

Flag register

•Carry Flag, CF (桁上がりフラグ)
• If carry-over occurs, CF = 1.

•Overflow Flag, VF (桁あふれフラグ)
• If over-flow happens, VF = 1.

•Negative Flag, NF (負フラグ)
• If the result if negative, NF = 1

•Zero Flag, ZF (ゼロフラグ)
• If the result is zero, ZF = 1.

67

p.22 Fig. 2

Problem 3.1 (p.33)

• (1)
• Trace the observable registers and buses during the

beginning and end of the execution.
• (2)--(6)
• Trace the flag register during the beginning and end of

the ADD command.
• Change ADD to ADC and trace the flag register during

the beginning and end of the ADD command.
• Record the results of each addition.

68

Problem 3.1: Caution 1/2

• “64” in hexadecimal, ???????? in binary
•To input a value in the 80th address, the MAR

should first be operated upon.
•Check the result at the beginning
•Pay attention to avoid misreading “6” as “b.”

69

Problem 3.1: Caution 2/2

•Use “two’s complement (2の補数表現)” for
negative values

70

0 0 0 0 0 0 1 13

1 1 1 1 1 1 0 1-3

1 0 0 0 0 0 0 0 0

＋

Points for report

• (1)
• Explain the operation in each phase of all commands

with sentences and figures.
• You can refer pp. 24--28.
• You can download some material here.
• https://expcs.github.io/microprocessor/

• (2)--(6)
•What is the condition for changing each of the flags.
• Explain the differences between ADD and ADC.

71

What we will do today

• Introduction
•Fundamental usage of KUE-CHIP2
•Problem 3.1
• Trace the values in ACC, PC, FLAG, etc., while

executing ADD and ADC.
•Problem 3.3 (1)
• Check the clock frequency
• Generate a single tone that are as much accurate 440

Hz as possible.
• Introduction of next problem

72

Output a melody

•Output waves from KUE-CHIP2 to generate a sound
from a speaker.

•Today: the basic mechanisms to generate a sound
•3rd lecture: run a program to output a melody

73

What is sound?

•Sound is vibration (waves) that travels through the
air.
•There are three elements of sound:
• Loudness: The amplitude of the wave
• Pitch: The frequency of the wave
• Timbre: The harmonic content of a sound

• Loudspeaker:
An electroacoustic device that converts electric
signals to vibrations of air (sound).

74

Waves to generate

•Rectangular wave

•T ＝ Ta ＋ Tb

Wave period (周期) T (s)

Ta (s) Tb (s)

On

Off

75

Address label instruction operand # of phases
00: L0: LD ACC, FFh 4

02: OUT 4

03: LD ACC, a 4

05: L1: SUB ACC, 01h 4

07: BNZ L1 4

09: LD ACC, 00h 4

0B: OUT 4

0C: LD ACC, b 4

0E: L2: SUB ACC, 01h 4

10:
12:

BNZ
BA

L2
L0

4
4

Wave generation (p.39, List 4)

76

Determine by
yourself

Determine by
yourself

Address label instruction operand # of phases
00: L0: LD ACC, FFh 4

02: OUT 4

03: LD ACC, a 4

05: L1: SUB ACC, 01h 4

07: BNZ L1 4

09: LD ACC, 00h 4

0B: OUT 4

0C: LD ACC, b 4

0E: L2: SUB ACC, 01h 4

10:
12:

BNZ
BA

L2
L0

4
4

Wave generation (p.39, List 4)

77

“On” part of
the wave

“Off” part of
the wave

Waves to generate

• Rectangular wave

• T ＝ Ta ＋ Tb
• In the list 4, Ta ＝ (12+8a)T0，Tb ＝ (16+8b)T0

(where T0 = time for 1 clock)

Wave period T (s)

Ta (s) Tb (s)

On

Off

78

Problem 3.3 (1) p.33

• (a) Examine the period for one clock
• Set the CLK switch to the middle
• Set the CLKFRQ dial to 0 to 8. Measure the frequency

for each.
• The signal is output from JP3 (at the second highest

row of the right column)
• (b) Determine a and b in the list 4.
• The frequency to output: 440Hz “A”
• Determine the optimal T0, a, and b by calculation
• T = Ta + Tb, T = 1/440 (s)
• Ta ＝ (12+8a)T0，Tb ＝ (16+8b)T0

79

Problem 3.3 (1) p.33

• (c) Output a wave of frequency 440 Hz
• Input the program from list 4
• Set the CLKFRQ dial
•Measure the frequency of the signal on the

oscilloscope through DAC.’
• Confirm, through calculation, that the output frequency

is 440 Hz with an error of ±1%.

80

Digital to analogue value

•Attach a DA converter to the output buffers, and
send output signals to the oscilloscope.

•A DA converter (DAC):
• It is an electronic device that takes a digital

numerical value as input, and outputs a voltage
signal based on the input.

81

1101 a DA converter 13
(A signal with 4 digits of 0 or 1) (A value out of 16)

Notes for the DAC

•The DAC is fragile.
•Treat it carefully. (Don’t touch it needlessly.)
•Take special care of the circuit around the

attachment part.
•The lecturer / TA will attach or detach it for you.

82

How to connect DAC

•Connect the DAC to the oscilloscope;
channel 1 → Red
channel 2 → Blue
ground → Black
•Set CLKFRQ dial to “1” and run the program.

83

Notes for your report for (3) Output a melody
(a) Ensure that the accuracy is within a range
of±1%.

•How did you determine the optimal T0, a, b?
• Describe the calculation process.

•How did you check it?
• Calculate the error between the generated and target

frequency.
•Are there any other ways to check the error?

84

Notes for your report for (3) Output a melody
(b) Propose methods for increasing the accuracy

• Involving the KUE-CHIP2 only (by the software
schemes)
•Connecting KUE-CHIP2 with some device (by

hardware schemes)

※ Consider methods of making the output
frequency close to 440 Hz while still using the same
algorithm to generate the sound.

85

What we will do today

• Introduction
•Fundamental usage of KUE-CHIP2
•Problem 3.1
• Trace the values in ACC, PC, FLAG, etc., while

executing ADD and ADC.
•Problem 3.3 (1)
• Check the clock frequency
• Generate a single tone that are as much accurate 440

Hz as possible.
• Introduction of next problem

86

Next class: Problem 3.2: Multiplication

•Multiplication of 2 bytes precision level values
without signs
•You do not have to store the data in the addresses

shown in the text.
•You can assume the result is within 2 bytes

•Preparations
Prepare and assemble a program

87

80h81h

82h83h

84h85h

×

Supplementary:
2 bytes-precision level multiplication

88

1 0 1 0 1 0 1 10 0 0 0 0 0 1 1

0 0 1 0 0 1 0 10 0 0 0 0 0 0 0×

1 0 1 1 0 1 1 11 0 0 0 0 1 1 1

1 byte = 8 bits

Most significant bit (MSB)
Least significant bit (LSB)

Be cautious of the addresses on the memory

Supplementary: Address modes

•They are ways for notations of operands
•The address modes for KUE-CHIP2 (pp.29–31) are:
• ACC, IX: the content in ACC (IX) is data
• Immediate: the operand itself is data
• Direct: the operand is the address and the content of

the address is data
• Indirect: “the operand + the content of IX” is the

address and the content of the address is data.

89

Supplementary: ADD, ADC, RCF (p.24)

•ADD: It adds the two operands without CF
•ADC: It adds the two operands with CF
•SUB and SBC also have the same relationship as

ADD and ADC.

•RCF: It resets the CF

90

Notes

•You should prepare a program to begin immediately
the program input.
•You should make a flowchart before writing codes.
• You can easily find bugs with the help of the flowchart.
• It is recommended that the programs and the

flowcharts are printed on separate pages.
•We will not help if you are late or do not prepare

them.
• Your points will be taken off or we will not accept your

report.

91

Example of flowchart
Multiplication with 1 byte precision level

A

B

C

×

Sub 1 from B
B - 1 → B

Add A to C
C + A → C

Initialization
0 → C

End
HLT

End decision
B = 0 ?

Y

N

The flowcharts
illustrate the flow of
programs by figures
and sentences

92

Example of addition with 2 byte precision level

0 → CF
A2 + B2 + 0 → C2
A1 + B1 + CF → C1

Addition

End
HLT

A2A1

B2B1

C2C1

＋

RCF

LD ACC, [A2]
ADC ACC, [B2]
ST ACC, [C2]

LD ACC, [A1]
ADC ACC, [B1]
ST ACC, [C1]

HLT

CF
Carry over

93

Notes for making programs

•Make the program understandable to others
•Print them out
•Do not use both sides of the papers
•Arrange assembly and machine languages neatly
• Leave spaces for modification
•Use of both of binary and hexadecimal is fine, but

hexadecimal is useful to check the program on the
board

94

Arrange assembly and machine languages
neatly

95

000: 20 RCF

001: 64 80 LD ACC, [A2]
003: 94 82 ADC ACC, [B2]
005: 74 84 ST ACC, [C2]

007: 64 81 LD ACC, [A1]
009: 94 83 ADC ACC, [B1]
00B: 74 85 ST ACC, [C1]

00D: 08 HLT

address

Frequently occurring errors

•The addresses for 2-byte data
• Check which addresses if both high and low bytes are

used
• Initialization
• SUM += A

•Carry over (ADD, ADC, RCF)
•Decision for the end
• Do not flag ZeroFlag if “LD 0”

•Forget to store the results
•Addresses are represented in decimal notation

96

80h81h

82h83h

84h85h

×

Emulators for the preparation

•A KUE-CHIP2 Emulator
http://www.vector.co.jp/soft/winnt/util/se506103.h
tml
•A KUE-CHIP2 web assembler

http://www.hpc.se.ritsumei.ac.jp/kue-chip2/kue2-
webasm/
•KEMU Emulator (←Recommended)
•https://emu.kemuide.openwaseda.net

97

http://www.vector.co.jp/soft/winnt/util/se506103.html
http://www.hpc.se.ritsumei.ac.jp/kue-chip2/kue2-webasm/
https://emu.kemuide.openwaseda.net/

What we will do today

• Introduction
•Fundamental usage of KUE-CHIP2
•Problem 3.1
• Trace the values in ACC, PC, FLAG, etc., while

executing ADD and ADC.
•Problem 3.3 (1)
• Check the clock frequency
• Generate a single tone that are as much accurate 440

Hz as possible.
• Introduction of next problem

98

Microprocessors (Lecture 2)

99

Lecture 2

•Problem 3.2: Creation of a multiplication program
•Write a program to multiply two unsigned 2-byte

numbers
•The addresses for storing data are not necessarily

the same as in the textbook
•You can assume the results will stay within a length

of 2 bytes

•Preparation required:
Writing a program and assembling it

100

Frequent mistakes (reshown)

•Handling 2-byte data
•Mistook upper or lower addresses

•Missed initialization
• SUM += A

•Failure of carry (ADD, ADC, RCF)
•Wrong judgment of completion
• LD 0 does not reset the Zero Flag.

•Forgot data storing (ST)
•Addresses are in decimal (not in hexadecimal)
•Typing mistakes, wrong assemblies

101

80h81h

82h83h

84h85h

×

Procedure

• Input your program into the board.
•We will check the flow chart during input.

•Perform operation checks for examples 1 to 4
written on the white board.
•Then calculate A and B on the white board.

Measure the execution time (at 100 Hz).
•Fill the execution time and memory usage (unit:

bytes) on the white board.
•Memory usage = memory for program + for storage

102

Theoretical execution time

•Calculate the theoretical execution time for your
program, and compare it with the actual time as
follows;

1. Identify the parameters needed to determine the
theoretical execution time.
• The number of phases for each instruction (see Table 2 on

p.18)
• 1 phase = 1 clock
• Clock frequency = 100 Hz

2. Derive an expression for the calculation.
3. Calculate the time by using the expression.
4. Compare the time.

103

Notes for your report

•Explain your program with a flow-chart.
•Compare your program to that of at least two other

students. Points to include in the comparison are:
1. actual execution time
2. memory consumption

•Note that you do not have to insert the others’
program lists, but describe them briefly.

104

For the next lecture
Problem 3.4 (2) Output a melody

•Preparation required:
writing a program and assembling it
•Reference: Appendix B.2 and list 5 (p.41)
• The preparation of only the data for music score

does not complete it.
• Some modifications are needed in list 5.

• If you cannot complete the problem in time, it will
just be closed.
We can support you only if you have prepared a
program.

105

Notes

•Output the melody as an endless loop
•Don’t make any sound outside the audible range
•Refer Table 13 on p.40
•One octave higher → Double the frequency

•Some modifications are needed in list 5.
• How can you represent a “rest”?

→ Distinguish between a note and a rest to process
them differently.
•When the same notes continue, they are heard as one

long note.
→ A space is needed between the notes in this case.

106

Generation of a melody (list 5)

107

000: 62 00 LD ACC, dptr1

002: 75 1A ST ACC, (dptr)

004: 65 1A L0: LD ACC, (dptr)

006: 68 LD IX, ACC

007: B2 03 ADD ACC, 0x3

009: 75 1A ST ACC, (dptr)

00B: A2 18 SUB ACC, dptr2

00D: 31 13 BNZ L1

00F: 62 00 LD ACC, dptr1

011: 75 1A ST ACC, (dptr)

013: 67 02 L1: LD ACC, (IX+2)

015: 75 1C ST ACC, (n3)

100: n1 n2 n3 dptr1: C
103: n1 n2 n3 D
106: n1 n2 n3 E
109: n1 n2 n3 F
10C: n1 n2 n3 G
10F: n1 n2 n3 A
112: n1 n2 n3 B
115: n1 n2 n3 C
118: dptr2: (not used)

119: 00 or ff image
11A: ?? dptr
11B: ?? n2
11C: ?? n3

Program region Data region

The addresses 00, 1A, 1C, and 18 in the list
represent the ones you are using.

(Change it to fit your program) n1 changes the pitch, and n2 and n3 change
the length of the tone (double loop)

It points to the current sound
(increase by 3)

The end
Output

Used when
running

The start

Microprocessors (Lecture 3)

108

Problem 3.3 (2) Output a melody

•Output a simple melody
•Preparation required:

writing a program and assembling it
•Reference: Appendix B.2 and list 5 (p.41)

•Take care when you handle a DAC.

109

Notes for your report
(4)(c) Describe the method of data expression

•Use a program list

•For example, a musical score represents a melody in
a readable expression for humans.
•What is the understandable expression of data for

this case?

110

Notes for your report
(4)(d) Can you use the same way of outputting the
melody for other CPUs?

•Give an example of a CPU.
•Study the instructions of the CPU you choose.

111

Notes for your report
(5) Study the CPU you mostly use (or a famous
CPU) and its architecture, and report it.

• Include the features of registers, instructions, or
memory spaces, etc.
•How to execute a multiplicative instruction on the

CPU?
•Arbitrary problem
• You do not need to do, but the problem will be

additionally scored.

112

Summary

•We have learned about the mechanism through
which a computer works.
• For example: why can’t a 32 bit OS handle more than 4

GB of memory?
•We learned how to program and debug.

113

4G = 4×1024×1024×1024
= 22×210×210×210 = 232

Assembly
language

com
pile

assem
ble

High-level
language

Machine
language

Report submission 1/3

•Read the requirement written on page 6 of the
textbook carefully.
•Send your report as a PDF file to

fukumura@cs.tut.ac.jp.
•You can make your own format for the cover.
•No need to copy the description of the

experimental methods straight from the textbook.
•Refer “Notes for your report” on this PPT file.
•You must check your report by using the self

inspection sheet. (No need to submit the sheet.)
114

Report submission 2/3

•The deadline is on 23.59 one week after today (be
punctual)
•No extension of the deadline is acceptable except in

case of an accident or illness.
• You can submit an improvement or modification of the

report until one week after the deadline.
•We will not accept uncompleted reports (half done).

115

Report submission 3/3

•The subject of the E-mail:
• [report] [student ID] [your name]
• [レポート] B123456 豊橋太郎

•Convert the report to a PDF file.
•The name of the pdf file should be:
• [Your school register number]-[your name].pdf.
• B123456-豊橋太郎.pdf

•We will respond to you within 3 days. If you do not
receive a reply from us after 4 days, come to room
F-408.
• If you have any question, please ask me.

116

